Inorganic Chemistry

Advances in Understanding the Mechanism and Improved Stability of the Synthesis of Ammonia from Air and Water in Hydroxide Suspensions of Nanoscale Fe₂O₃

Fang-Fang Li and Stuart Licht*

Department of Chemistry, George Washington University, Washington, D.C. 20052, United States

Supporting Information

ABSTRACT: We report a mechanism of electrochemical ammonia (NH₃) production via an iron intermediate in which H₂ and NH₃ are cogenerated by different electrontransfer pathways. Solar thermal can contribute to the energy to drive this synthesis, resulting in a STEP, solar thermal electrochemical process, for NH₃. Enhancements are presented to this carbon dioxide (CO_2) -free synthesis, which uses suspensions of nano-Fe2O3 in high-temperature hydroxide electrolytes at nickel and Monel electrodes. In a 200 °C molten eutectic Na_{0.5}K_{0.5}OH electrolyte, the 3 Faraday efficiency per mole of synthesized NH₃, $\eta_{\rm NH_3}$, increases with decreasing current density, and at $j_{\text{electrolysis}} =$ 200, 25, 2, and 0.7 mA cm⁻², $\eta_{\rm NH_3}$ = 1%, 7%, 37%, and 71%, respectively. At 200 mA cm⁻², over 90% of applied current drives H₂, rather than NH₃, formation. Lower temperature supports greater electrolyte hydration. At 105 °C in the hydrated Na_{0.5}K_{0.5}OH electrolyte, $\eta_{\rm NH_3}$ increases and then is observed to be highly stable at $\eta_{\rm NH_3}$ = 24(+2)%.

low-carbon-footprint alternative is needed for the Haber-Bosch process to mitigate associated climate effects. We recently presented a carbon dioxide (CO_2) -free electrochemical pathway in which ammonia (NH_3) is produced by electrolysis of air and steam in a molten hydroxide suspension of nano-Fe₂O₃.¹ Haber-Bosch production of NH₃ is one of the world's most pervasive industrial processes, but it is energy-intensive and has a high carbon footprint, so an alternative is needed.^{2,3} The process annually converts over 120 million tonnes of N2 from the atmosphere³ while emitting 200 million tonnes of CO₂.⁴ Increased production of synthetic NH₃ for fertilizer parallels the explosive increase in the world population from 2 billion in 1930 to 7 billion today. The process is the origin of approximately one in two nitrogens within our bodies (microorganism nitrogen fixation is the other source). Currently, 0.7-0.8 CO₂ are emitted per NH₃ produced.⁴

Several electrochemical processes have been pursued for consideration as alternative syntheses of NH₃.^{1,5–8} We observed high NH₃ generation rates when a 200 °C molten hydroxide (NaOH/KOH) electrolyte is mixed with high-surface-area Fe₂O₃, and N₂ and water vapor are electrolyzed in the cell (between a planar nickel anode and a mesh nickel-Monel

cathode). Both water-saturated, CO₂-scrubbed air and 99.999% N₂ yielded similar efficiencies of NH₃ generation.

The observed efficiency of NH₃ formation by electrolysis was lower at higher current densities. NH3 by electrolysis refers to the global reaction of $N_{2}\!\!\!\!$, water, and electrons to form NH_3 (and oxygen). The efficiency, $\eta_{\rm NH_2}$, is calculated based on the moles of electrons consumed compared to the 3e⁻/NH₃ equivalents generated. At higher current densities, the electrolysis cogenerates H₂. At 200 °C in a eutectic Na_{0.5}K_{0.5}OH electrolyte with suspended nano-Fe₂O₃, we observed that $2 \text{ mA cm}^{-2} \text{ NH}_3$ is produced at a Coulombic efficiency of $\eta_{\rm NH_2}$ = 35%, which decreases to 7% at 25 mA cm^{-2.1} Constant current electrolysis at 2 or 25 mA cm⁻² is driven respectively at 1.2 or 1.4 V, producing NH₃ at maximum respective rates of 2.4×10^{-9} and 6.7×10^{-9} mol of NH₃ s⁻¹ cm⁻². Here we show conditions of improved rates, Coulombic efficiency, and stability of NH₃ production. Details of the measured NH₃ formation rate and electrolysis efficiency are delineated in the Supporting Information.

The left side of Figure 1 presents the observed rate of NH₃ formation at high current 2000 mA (200 mA cm^{-2}) from N₂ and water using a 10 cm² nickel anode and a 10 cm² Monel mesh cathode. At 200 mA cm $^{-2}$, $\rm NH_3$ is formed at 2.4 V in molten $Na_{0.5}K_{0.5}OH$ with suspended nano-Fe₂O₃ at 200 °C. The electrolysis is water-limited, constrained by the maximum solubility of water ($\sim 10\%$ by weight) in this molten hydroxide at 200 °C. Despite bubbling of water-vapor-saturated N2 into the cell, the system dehydrates over time. As seen when water is added at the seventh hour (15 g of water added to the initial 70 g of hydroxide electrolyte), the rate of NH₃ production doubles compared to that in hours 4-6. Another path to hydrate the system is through lowering of the temperature, which supports higher dissolution of water in alkali hydroxide. At 105 °C, the NH₃ synthesis was conducted in both 30% (by mass) water in Na_{0.5}K_{0.5}OH and 50% water in CsOH. As seen on the right side of Figure 1, the higher fraction of allowed water at 105 °C yields up to double the observed NH₃ generation rate compared to 200 °C. At 105 °C and 200 mA cm⁻², NH₃ is formed at 2.5 or 2.3 V respectively in Na_{0.5}K_{0.5}OH containing 30% water or in CsOH containing 50% water.

In Figure 1 at the lowest applied current of 0.7 or 1 mA cm^{-2} (7 or 10 mA over 10 cm^2), the NH₃ production rate is stabilized. Interestingly, at this low current, only NH₃, and no H₂, product is detected. The lack of a cogenerated H₂ is related to the

Received: August 19, 2014 Published: September 23, 2014

Inorganic Chemistry

Figure 1. NH₃ formation rate by electrolysis from N₂ and water in suspensions of nano-Fe₂O₃ in a hydroxide electrolyte. In this one-pot synthesis, water-saturated N₂ gas was bubbled into the electrolyte, and a constant current was applied between 10 cm² nickel–Monel electrodes. The NH₃ product was quantitatively compared to the applied integrated electrolysis charge to determine the NH₃ production rate.

electrolysis potential, observed to be 1.2 V at 1 mA cm⁻² in this 105 °C Na_{0.5}K_{0.5}OH with 30% water electrolyte. This value equals the thermodynamic potential of 1.2 V for water splitting at this temperature and is too low to supply the additional overpotential that is necessary to drive the formation of H₂. At lower current, even at 200 °C, the electrodes without activation act in a sluggish manner and the observed efficiency is $\eta_{\rm NH_3} = 18\%$ at 7 mA (0.7 mA cm⁻²). However, when the electrodes are activated by a short burst of current, the maximum electrolysis rate of NH₃ formation is significantly higher, specifically 3-fold higher subsequent to a 30 min 250 mA current burst. In both the 15 and 30 min current-burst experiments in Figure 2, care was taken to flush the system (with NH₃ and no applied current) to ensure that all current-burst NH₃ produced was exhausted in the

Figure 2. Charge efficiency, $\eta_{\rm NH_3'}$ of NH₃ formed by electrolysis of N₂ and water in suspensions of nano-Fe₂O₃ in molten Na_{0.5}K_{0.5}OH electrolytes. To measure $\eta_{\rm NH_3'}$ the analyzed NH₃ product is compared to the applied, integrated electrolysis charge.

water trap prior to the initiation of electrolysis. The current efficiency of NH_3 formation is 51% subsequent to a 15 min 250 mA current burst, and the efficiency is 71% subsequent to a 30 min 250 mA current burst. Without the current burst, or subsequent to the current burst, the electrolysis at a constant current of 7 mA occurs at 1 V in the 200 °C molten $Na_{0.5}K_{0.5}OH$ electrolyte, and unlike at higher applied current densities, H_2 is not cogenerated with the NH_3 product. Specifically, the potential gradually increases from 1.00 to 1.04 during the first 8 h of electrolysis and then increases gradually to 1.18 V by hour 20.

Figure 2 probes the stability of the NH_3 electrolysis efficiency over 20 h. Lower current density and lower temperature improve the stability of the rate of NH_3 formation, and the rate subsequent to the shorter current burst is more stable than that after the higher duration current boost. At 10 mA and 105 °C, the NH_3 electrolysis efficiency increases over the first 5 h (without current-burst activation) and is nearly stable at 24(+2%) over the next 15 h of electrolysis.

To synthesize NH_3 by electrolysis in hydroxide, water, N_2 (or air), and nanoscopic Fe_2O_3 are simultaneously required. The rates and electrolysis potentials at which H_2 formed hydroxide are not significantly perturbed when nanoscopic iron oxide is suspended in the electrolyte.¹ No H_2 is generated at potentials of less than the thermodynamic water potential. At higher electrolysis potentials, cogenerated H_2 formed by water splitting does not appear to significantly participate in the observed NH_3 formation process. Interestingly and was previously evidenced,¹ the potential of H_2 evolution is not affected, and the H_2 rate is only diminished by the extent of NH_3 evolution.

Without an applied electrolysis current, *no* significant chemical reaction is observed to occur between either N₂ and H₂ or N₂ and water in the presence of Fe₂O₃. Alternatively, we observe that iron metal powder, N₂, and water chemically react to form NH₃; the reaction accelerates with decreasing iron particle size. Specifically, water-saturated N₂ was bubbled into a 200 °C molten Na_{0.5}K_{0.5}OH electrolyte containing either ~70 μ m, 1–3 μ m, or 10–30 nm iron powder. With ~70 μ m iron, NH₃ was formed at 3.4 × 10⁻⁷ mol of NH₃ h⁻¹ per g of the iron powder during the first 2 h, decreasing to 0.87 × 10⁻⁵ mol of NH₃ h⁻¹ g⁻¹ during the first 2 h, decreasing to 0.21 × 10⁻⁵ after 16 h and to 0.0054 × 10⁻⁵ after 26 h. With 10–30 nm iron, the reaction was too fast and violent to be measured, forcing molten electrolyte into the gas outlet of the reaction chamber.

The experimental observations are consistent with an NH_3 formation mechanism in alkali hydroxide media, in which the iron oxide is reduced at the cathode and chemically reacts with the N_2 and water as

cathode: $Fe_2O_3 + 3H_2O + 6e^- \rightarrow 2Fe + 6OH^-$ (1)

chemical: $2Fe + 3H_2O + N_2 \rightarrow 2NH_3 + Fe_2O_3$ (2)

anode:
$$6OH^- \rightarrow \frac{3}{2}O_2(g) + 3H_2O + 6e^-$$
 (3)

net:
$$N_2 + 3H_2O \rightarrow 2NH_3 + \frac{3}{2}O_2$$
 (4)

Preferential electron transfer from iron to nitrogen is discussed in the Supporting Information. At high current densities, water splitting and the iron cathodic reaction run concurrently to cogenerate H_2 and NH_3 (and anodic O_2). At low current densities (at potentials less of than or equal to the water-splitting potential), only the iron cathodic reaction (1) contributes to the electrolysis. In this case, NH₃ and not H₂ is formed. Above the water-splitting potential, the global reaction also forms zH_2 from $2NH_3 + zH_2$ using 6 + 2z electrons, in the presence of nano-Fe₂O₃:

$$N_2 + (3 + z)H_2O \rightarrow 2NH_3 + zH_2 + \frac{3 + z}{2}O_2$$
 (5)

Using the known enthalpy and entropy of the product and reactant species, we have recently calculated that the thermodynamic conditions in the reactions of water and air to form NH₃ and H₂ are endothermic and will benefit from the introduction of heat into the system.¹ Previous studies delineate outdoor solar experiments that use such endothermic elevated temperature conditions for our solar thermal electrochemical process (STEP). STEP has demonstrated that sub-band-gap solar thermal energy in sunlight is sufficient to heat and drive a variety of chemical reactions that would be energetically forbidden at lower temperature. STEP uses solar thermal energy to facilitate the electrochemical synthesis of societal staples, carbon capture, and water treatment without CO₂ emissions.³ In ongoing experiments, the new NH₃ electrolyzer will be integrated into our outdoor STEP test heliostat platform.¹² The platform consists of a 39% efficient Spectrolab CPV with maximum power at 2.7 V, sufficient to drive two (at 1.35 V) or three (at 0.9 V) in-series solar-thermal-heated NH₃ electrolyzers.

ASSOCIATED CONTENT

S Supporting Information

Experimental methods and extended discussion and data. This material is available free of charge via the Internet at http://pubs. acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: slicht@GWU.edu. Phone: 703-726-8225.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Partial support of this research was provided by NSF Grant 123072.

REFERENCES

(1) Licht, S.; Cui, B.; Wang, B.; Li, F.-F.; Lau, J.; Lui, S. Science 2014, 345, 637-640.

(2) Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production; MIT Press: Cambridge, MA, 2004.

(3) Rockstron, J. Nature 2009, 461, 472-475.

(4) Strait, R.; Nagvekar, M. Carbon dioxide capture and storage in the nitrogen and syngas industries. *Nitrogen + Syngas* **2010**, *303*, 1–3 (Jan–Feb) at http://www.kbr.com/Newsroom/Publications/Articles/Carbon-Dioxide-Capture-and-Storage-in-the-Nitrogen-Syngas-Industries.pdf.

(5) Lan, R.; Irvine, J. T. S.; Tao, S. Synthesis of ammonia directly from air and water at ambient temperature and pressure. *Sci. Rep.* **2013**, *3*.

(6) Serizawa, N.; Miyashiro, H.; Takei, K.; Ikezumi, T. J. Electrochem. Soc. 2012, 159, E87–E91.

(7) Amar, I.; Lan, R.; Petit, C.; Tao, S. J. Solid State Electrochem. 2011, 15, 1845–1860.

(8) Murakami, T.; Nohira, T.; Araki, Y.; Goto, T.; Ogata, Y. H. *Electrochem. Solid-State Lett.* **200**7, *10*, E4–E6.

(9) Licht, S. J. Phys. Chem. C 2009, 113, 16283-16292.

(10) Licht, S. Adv. Mater. 2011, 47, 5592-5612.

(11) Wang, B.; Wu, H.; Zhang, G.; Licht. ChemSusChem 2012, 5, 2000-2010.

(12) Licht, S.; Wu, H.; Hettige, C.; Wang, B.; Lau, J.; Asercion, J.; Stuart, J. Chem. Commun. 2012, 48, 6019.

(13) Licht, S.; Cui, B.; Wang, B. J. CO₂ Utilization 2013, 2, 58-63.

(14) Cui, B.; Licht, S. Green Chem. 2013, 15, 881-884.

(15) Divisek, J., Malinowski, P., Mergel, J. *Electrolytic decompositions of water in fused hydroxides*; Energy Commission of the European Communities, 1983; EUR 8288 EN.