Advances in Understanding the Mechanism and Improved Stability of the Synthesis of Ammonia from Air and Water in Hydroxide Suspensions of Nanoscale Fe₂O₃

Fang-Fang Li and Stuart Licht*

Department of Chemistry, George W[ash](#page-2-0)ington University, Washington, D.C. 20052, United States

S Supporting Information

[AB](#page-2-0)STRACT: [We](#page-2-0) [report](#page-2-0) [a](#page-2-0) [m](#page-2-0)echanism of electrochemical ammonia (NH_3) production via an iron intermediate in which H_2 and NH_3 are cogenerated by different electrontransfer pathways. Solar thermal can contribute to the energy to drive this synthesis, resulting in a STEP, solar thermal electrochemical process, for $NH₃$. Enhancements are presented to this carbon dioxide $(CO₂)$ -free synthesis, which uses suspensions of nano- $Fe₂O₃$ in high-temperature hydroxide electrolytes at nickel and Monel electrodes. In a 200 °C molten eutectic $\text{Na}_{0.5}\text{K}_{0.5}\text{OH}$ electrolyte, the 3 Faraday efficiency per mole of synthesized NH₃, η_{NH_3} , increases with decreasing current density, and at $j_{\text{electrolysis}} =$ 200, 25, 2, and 0.7 mA cm⁻², $\eta_{\text{NH}_3} = 1\%$, 7%, 37%, and 71%, respectively. At 200 mA cm[−]² , over 90% of applied current drives H_2 , rather than NH_3 , formation. Lower temperature supports greater electrolyte hydration. At 105 [°]C in the hydrated Na_{0.5}K_{0.5}OH electrolyte, η_{NH_3} increases and then is observed to be highly stable at η_{NH_3} = $24(+2)%$.

A low-carbon-footprint alternative is needed for the Haber−
Bosch process to mitigate associated climate effects. We recently presented a carbon dioxide $(CO₂)$ -free electrochemical pathway in which ammonia (NH_3) is produced by electrolysis of air and steam in a molten hydroxide suspension of nano-Fe $_{2}\mathrm{O}_{3}^{-1}$ Haber–Bosch production of NH₃ is one of the world's most pervasive industrial processes, but it is energy-intensive and has [a](#page-2-0) high carbon footprint, so an alternative is needed. $2,3$ The process annually converts over 120 million tonnes of N_2 from the atmosphere 3 while emitting 200 million to[nne](#page-2-0)s of $\mathrm{CO_2}^{4}$ Increased production of synthetic $NH₃$ for fertilizer parallels the explosi[ve](#page-2-0) increase in the world population from 2 billion i[n](#page-2-0) 1930 to 7 billion today. The process is the origin of approximately one in two nitrogens within our bodies (microorganism nitrogen fixation is the other source). Currently, 0.7− 0.8 $CO₂$ are emitted per NH₃ produced.⁴

Several electrochemical processes have been pursued for consideration as alternative syntheses of [N](#page-2-0)H₃.^{1,5−8} We observed high NH₃ generation rates when a 200 $^{\circ}$ C molten hydroxide (NaOH/KOH) electrolyte is mixed with [h](#page-2-0)i[gh](#page-2-0)-surface-area $Fe₂O₃$, and $N₂$ and water vapor are electrolyzed in the cell (between a planar nickel anode and a mesh nickel−Monel

cathode). Both water-saturated, CO_2 -scrubbed air and 99.999% N_2 yielded similar efficiencies of NH_3 generation.¹

The observed efficiency of $NH₃$ formation by electrolysis was lower at higher current den[si](#page-2-0)ties. NH₃ by electrolysis refers to the global reaction of N_2 , water, and electrons to form NH_3 (and oxygen). The efficiency, $\eta_{\rm NH_3}$, is calculated based on the moles of electrons consumed compared to the $3e^-/NH_3$ equivalents generated. At higher current densities, the electrolysis cogenerates H₂. At 200 °C in a eutectic $\text{Na}_{0.5}\text{K}_{0.5}\text{OH}$ electrolyte with suspended nano-Fe₂O₃, we observed that 2 mA cm⁻² NH₃ is produced at a Coulombic efficiency of η_{NH_3} = 35%, which decreases to 7% at 25 mA $\rm cm^{-2.1}$ Constant current electrolysis at . 2 or 25 mA cm[−]² is driven respectively at 1.2 or 1.4 V, producing NH₃ at maximum respective ra[te](#page-2-0)s of 2.4 × 10⁻⁹ and 6.7 × 10⁻⁹ mol of NH₃ s⁻¹ cm⁻². Here we show conditions of improved rates, Coulombic efficiency, and stability of NH₃ production. Details of the measured $NH₃$ formation rate and electrolysis efficiency are delineated in the Supporting Information.

The left side of Figure 1 presents the observed rate of $NH₃$ formation at high current 2000 [mA \(200 mA cm](#page-2-0) $^{-2})$ from N_2 and water using a 10 cm^2 nic[ke](#page-1-0)l anode and a 10 cm^2 Monel mesh cathode. At 200 mA cm^{-2} , NH₃ is formed at 2.4 V in molten $Na_{0.5}K_{0.5}OH$ with suspended nano-Fe₂O₃ at 200 °C. The electrolysis is water-limited, constrained by the maximum solubility of water (∼10% by weight) in this molten hydroxide at 200 °C. Despite bubbling of water-vapor-saturated N_2 into the cell, the system dehydrates over time. As seen when water is added at the seventh hour (15 g of water added to the initial 70 g of hydroxide electrolyte), the rate of $NH₃$ production doubles compared to that in hours 4−6. Another path to hydrate the system is through lowering of the temperature, which supports higher dissolution of water in alkali hydroxide. At 105 °C, the $NH₃$ synthesis was conducted in both 30% (by mass) water in $Na_{0.5}K_{0.5}OH$ and 50% water in CsOH. As seen on the right side of Figure 1, the higher fraction of allowed water at 105 °C yields up to double the observed $NH₃$ generation rate compared to 200 °C. At 10[5](#page-1-0) °C and 200 mA cm⁻², NH₃ is formed at 2.5 or 2.3 V respectively in $Na_{0.5}K_{0.5}OH$ containing 30% water or in CsOH containing 50% water.

In Figure 1 at the lowest applied current of 0.7 or 1 mA cm⁻² (7 or 10 mA over 10 cm²), the NH_3 production rate is stabilized. Interestingl[y,](#page-1-0) at this low current, only $NH₃$, and no $H₂$, product is detected. The lack of a cogenerated H_2 is related to the

Received: August 19, 2014 Published: September 23, 2014

Figure 1. NH₃ formation rate by electrolysis from N_2 and water in suspensions of nano-Fe₂O₃ in a hydroxide electrolyte. In this one-pot synthesis, water-saturated N_2 gas was bubbled into the electrolyte, and a constant current was applied between 10 cm² nickel−Monel electrodes. The $NH₃$ product was quantitatively compared to the applied integrated electrolysis charge to determine the $NH₃$ production rate.

electrolysis potential, observed to be 1.2 V at 1 mA cm^{-2} in this 105 °C $\text{Na}_{0.5}\text{K}_{0.5}\text{OH}$ with 30% water electrolyte. This value equals the thermodynamic potential of 1.2 V for water splitting at this temperature and is too low to supply the additional overpotential that is necessary to drive the formation of H_2 . At lower current, even at 200 °C, the electrodes without activation act in a sluggish manner and the observed efficiency is η_{NH_3} = 18% at 7 mA (0.7 mA cm^{-2}) . However, when the electrodes are activated by a short burst of current, the maximum electrolysis rate of $NH₃$ formation is significantly higher, specifically 3-fold higher subsequent to a 30 min 250 mA current burst. In both the 15 and 30 min current-burst experiments in Figure 2, care was taken to flush the system (with $NH₃$ and no applied current) to ensure that all current-burst NH₃ produced was exhausted in the

Figure 2. Charge efficiency, η_{NH_3} , of NH₃ formed by electrolysis of N₂ and water in suspensions of nano-Fe₂O₃ in molten $Na_{0.5}K_{0.5}OH$ electrolytes. To measure η_{NH_3} , the analyzed NH_3 product is compared to the applied, integrated electrolysis charge.

water trap prior to the initiation of electrolysis. The current efficiency of $NH₃$ formation is 51% subsequent to a 15 min 250 mA current burst, and the efficiency is 71% subsequent to a 30 min 250 mA current burst. Without the current burst, or subsequent to the current burst, the electrolysis at a constant current of 7 mA occurs at 1 V in the 200 $^{\circ}$ C molten Na_{0.5}K_{0.5}OH electrolyte, and unlike at higher applied current densities, H_2 is not cogenerated with the $NH₃$ product. Specifically, the potential gradually increases from 1.00 to 1.04 during the first 8 h of electrolysis and then increases gradually to 1.18 V by hour 20.

Figure 2 probes the stability of the $NH₃$ electrolysis efficiency over 20 h. Lower current density and lower temperature improve the stability of the rate of $NH₃$ formation, and the rate subsequent to the shorter current burst is more stable than that after the higher duration current boost. At 10 mA and 105 $^{\circ}$ C, the NH₃ electrolysis efficiency increases over the first 5 h (without current-burst activation) and is nearly stable at $24(+2%)$ over the next 15 h of electrolysis.

To synthesize $NH₃$ by electrolysis in hydroxide, water, $N₂$ (or air), and nanoscopic $Fe₂O₃$ are simultaneously required. The rates and electrolysis potentials at which H_2 formed hydroxide are not significantly perturbed when nanoscopic iron oxide is suspended in the electrolyte.¹ No H_2 is generated at potentials of less than the thermodynamic water potential. At higher electrolysis potentials, coge[ne](#page-2-0)rated H_2 formed by water splitting does not appear to significantly participate in the observed $NH₃$ formation process. Interestingly and was previously evidenced, the potential of H_2 evolution is not affected, and the H_2 rate is only diminished by the extent of $NH₃$ evolution.

Without an applied electrolysis current, no significant chemical reaction is observed to occur between either N_2 and H_2 or N_2 and water in the presence of $Fe₂O₃$. Alternatively, we observe that iron metal powder, N_{2} , and water chemically react to form NH_{3} ; the reaction accelerates with decreasing iron particle size. Specifically, water-saturated N_2 was bubbled into a 200 °C molten Na_{0.5}K_{0.5}OH electrolyte containing either ~70 μm, 1–3 μm, or 10−30 nm iron powder. With ~70 μm iron, NH₃ was formed at 3.4 × 10^{-7} mol of NH₃ h⁻¹ per g of the iron powder during the first 2 h, decreasing to 0.87×10^{-7} after 14 h. With 1– 3 μ m iron, the NH₃ formation rate was 3.6 × 10⁻⁵ mol of NH₃ h^{-1} g⁻¹ during the first 2 h, decreasing to 0.21 × 10⁻⁵ after 16 h and to 0.0054 \times 10⁻⁵ after 26 h. With 10−30 nm iron, the reaction was too fast and violent to be measured, forcing molten electrolyte into the gas outlet of the reaction chamber.

The experimental observations are consistent with an $NH₃$ formation mechanism in alkali hydroxide media, in which the iron oxide is reduced at the cathode and chemically reacts with the N_2 and water as

 $\text{cathode:} \quad \text{Fe}_2\text{O}_3 + 3\text{H}_2\text{O} + 6\text{e}^- \rightarrow 2\text{Fe} + 6\text{OH}^-$ (1)

chemical: $2Fe + 3H₂O + N₂ \rightarrow 2NH₃ + Fe₂O₃$ (2)

anode:
$$
6OH^- \rightarrow \frac{3}{2}O_2(g) + 3H_2O + 6e^-
$$
 (3)

net:
$$
N_2 + 3H_2O \rightarrow 2NH_3 + \frac{3}{2}O_2
$$
 (4)

Preferential electron transfer from iron to nitrogen is discussed in the Supporting Information. At high current densities, water splitting and the iron cathodic reaction run concurrently to cogenerate H_2 and NH_3 (and anodic O_2). At low current densiti[es](#page-2-0) [\(at](#page-2-0) [potentials](#page-2-0) [less](#page-2-0) [of](#page-2-0) [th](#page-2-0)an or equal to the water-splitting potential), only the iron cathodic reaction (1) contributes to the

electrolysis. In this case, NH_3 and not H_2 is formed. Above the water-splitting potential, the global reaction also forms zH_2 from $2NH_3 + zH_2$ using 6 + 2z electrons, in the presence of nano- $Fe₂O₃$:

$$
N_2 + (3 + z)H_2O \rightarrow 2NH_3 + zH_2 + \frac{3 + z}{2}O_2
$$
 (5)

Using the known enthalpy and entropy of the product and reactant species, we have recently calculated that the thermodynamic conditions in the reactions of water and air to form $NH₃$ and $H₂$ are endothermic and will benefit from the introduction of heat into the system.¹ Previous studies delineate outdoor solar experiments that use such endothermic elevated temperature conditions for our solar thermal electrochemical process (STEP). STEP has demonstrated that sub-band-gap solar thermal energy in sunlight is sufficient to heat and drive a variety of chemical reactions that would be energetically forbidden at lower temperature. STEP uses solar thermal energy to facilitate the electrochemical synthesis of societal staples, carbon capture, and water treatment without CO_2 emissions.^{9−14} In ongoing experiments, the new $NH₃$ electrolyzer will be integrated into our outdoor STEP test heliostat platform.¹² The platform consists of a 39% efficient Spectrolab CPV with maximum power at 2.7 V, sufficient to drive two (at 1.35 V) or three (at 0.9 V) in-series solar-thermal-heated NH₃ electrolyzers.

■ ASSOCIATED CONTENT

6 Supporting Information

Experimental methods and extended discussion and data. This material is available free of charge via the Internet at http://pubs. acs.org.

[■](http://pubs.acs.org) AUTHOR INFORMATION

Corresponding Author

*E-mail: slicht@GWU.edu. Phone: 703-726-8225.

Notes

The aut[hors declare no com](mailto:slicht@GWU.edu)peting financial interest.

■ ACKNOWLEDGMENTS

Partial support of this research was provided by NSF Grant 123072.

ENDERGERMINIST REFERENCES

(1) Licht, S.; Cui, B.; Wang, B.; Li, F.-F.; Lau, J.; Lui, S. Science 2014, 345, 637−640.

(2) Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production; MIT Press: Cambridge, MA, 2004.

(3) Rockstron, J. Nature 2009, 461, 472−475.

(4) Strait, R.; Nagvekar, M. Carbon dioxide capture and storage in the nitrogen and syngas industries. Nitrogen + Syngas 2010, 303, 1−3 (Jan− Feb) at http://www.kbr.com/Newsroom/Publications/Articles/ Carbon-Dioxide-Capture-and-Storage-in-the-Nitrogen-Syngas-Industries.pdf.

(5) Lan, [R.; Irvine, J. T. S.; Tao, S. Synthesis of ammonia directly from](http://www.kbr.com/Newsroom/Publications/Articles/Carbon-Dioxide-Capture-and-Storage-in-the-Nitrogen-Syngas-Industries.pdf) [air and water at ambient temperature and pressure.](http://www.kbr.com/Newsroom/Publications/Articles/Carbon-Dioxide-Capture-and-Storage-in-the-Nitrogen-Syngas-Industries.pdf) Sci. Rep. 2013, 3.

[\(6\) Serizawa](http://www.kbr.com/Newsroom/Publications/Articles/Carbon-Dioxide-Capture-and-Storage-in-the-Nitrogen-Syngas-Industries.pdf), N.; Miyashiro, H.; Takei, K.; Ikezumi, T. J. Electrochem. Soc. 2012, 159, E87−E91.

(7) Amar, I.; Lan, R.; Petit, C.; Tao, S. J. Solid State Electrochem. 2011, 15, 1845−1860.

(8) Murakami, T.; Nohira, T.; Araki, Y.; Goto, T.; Ogata, Y. H. Electrochem. Solid-State Lett. 2007, 10, E4−E6.

(9) Licht, S. J. Phys. Chem. C 2009, 113, 16283−16292.

(10) Licht, S. Adv. Mater. 2011, 47, 5592−5612.

(11) Wang, B.; Wu, H.; Zhang, G.; Licht. ChemSusChem 2012, 5, 2000−2010.

(12) Licht, S.; Wu, H.; Hettige, C.; Wang, B.; Lau, J.; Asercion, J.; Stuart, J. Chem. Commun. 2012, 48, 6019.

- (13) Licht, S.; Cui, B.; Wang, B. J. CO₂ Utilization 2013, 2, 58–63.
- (14) Cui, B.; Licht, S. Green Chem. 2013, 15, 881−884.

(15) Divisek, J., Malinowski, P., Mergel, J. Electrolytic decompositions of water in fused hydroxides ; Energy Commission of the European Commnunities, 1983; EUR 8288 EN.